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1 Introduction
Since its onset in the homosexual population in California during the early eighties and its clear identifi-
cation by a French team of researchers in 1983, Human Immunodeficiency Virus (HIV) and then Acquired
Immune Deficiency Syndrome (AIDS) has still been one of the most deadly active worldwide epidemics.
In the last UNAIDS study released in 2019, about 38 million of individuals lived with HIV, 1.7 million
got infected and 690000 died of /AIDS-related diseases in the world1.

We briefly remind that HIV is part of the retrovirus family, attacks directly the TCD4-cells in charge
of the immune responses, and eventually destroys as many as possible. This infection proceeds in 3
phases. Phase 1 : the Acute HIV infection. Few weeks after being infected, an individual may show
flu-like symptoms. Known as the Chronic HIV infection, phase 2 : can last up to 10− 15 years without
any symptoms and the virus keeps on reproducing at a very low level. Phase 3 : AIDS stage : if no
treatment is taken, HIV destroys enough TCD4 up to the immune system failure2. One can notice that a
fondamental problem in this infection is its latency. Indeed, the chronic HIV infection lasting many years
without any symptoms, this complicates and delays HIV/AIDS-diagnosis (See Figure 1 in [1]). The main
reason of the global spread of this epidemic is the different ways of transmission. There are 3 main ways
to transmit HIV : during sexual intercourses, blood exchanges or from a mother to child via breastfeeding.
Sharing syringes or any material used for drug injection may also transmit HIV3.

Despite extensive investigations, there is still neither drugs nor therapy that totally cure HIV. However,
since 1996, there exists a therapy, called ART, that consists in a combination of 3 (or more) antiretroviral
drugs taken daily. It is important to understand that this treatment does not cure HIV but reduces
significantly the presence of the virus in the body. An impressive benefit of ART is that individuals
under ART do not transmit HIV if ART is taken conscientiously. In 2019, 25.4 million of HIV-infected
individuals accessed antiretroviral therapy1 4.

Recently, in addition to the use of condom, a big step appeared with the Pre-Exposure Prophylaxy
(PrEP). This treatment addresses individuals that are not HIV-infected but are at high risk of contam-
ination. PrEP consists in taking a combination of 2 antiretrovirals in two different ways : either on a
daily basis or on demand that is just 1 day before and 2 days after sexual intercouses. Every 3 months,
patients under PrEP must take a global screening and decide whether they continue PrEP treatment
or not4 5. It is important to remind that PrEP is a preventive treatment and it does not cure HIV,
but effectively reduces HIV transmission4. Our study focuses on the French population, where PrEP is
completely effective since 2016, and followed by about 20000 individuals [2].

Many epidemiological models have been used in modelling HIV epidemics. A classical SICA (Suscepti-
ble - Infected - Infected under ART with low viral charge - Infected with AIDS symptom) compartmental
model on HIV/AIDS epidemic has been studied and confronted to data from Cape-Verde in order to fit
the epidemic dynamic [3]. In another paper [4], the authors suggested a SIRCA compartmental model in
which R is a kind of recovered compartment, where individuals recovered adopted a behaviour such that
we assume that they are completely protected from HIV. They studied the global stability and made some
numerical simulations but did not use specific data. Some other compartmental models with ordinary
differential equations underline the role of screening individuals and stress the importancy of individuals’
awareness and preventing policy of HIV/AIDS epidemic [5, 6, 7, 8, 9]. Numerous numerical simulations
in these models show that the screening of unaware individuals enables to reduce the transmission of HIV
and may have financial benefits. In [10], the authors used a model with delay, i.e an age structure that
models the incubation between infection and declaration of AIDS symptoms. They proceed through a
stability analysis and shown the persistence of the model. In [11], the authors introduced a model includ-
ing the screening of individuals and a delay that represents time between exposition to HIV and the onset
of the infection. They investigated a complete stability analysis and showed that periodic solutions can
arise. In [12], they endowed each compartment with an age structure that represents the time since an
individuals is in the compartment. In a second part they took into account the ART and the possibility
of treatment drop out. Lots of simulations show that intervention methods enables to reduce the number
of AIDS cases. Also, in [13], authors built a model that contains two different delays : one represents
the time between the beginning of the treatment and the first effects of the treatment and the other the
latency period.

But recently, some papers took into account a new compartment : the PrEP. In a previous paper [14],
autors suggested vaccination approach. Numerical simulations showed that the spread of the epidemic

1UNAIDS; Global HIV & AIDS statistics - 2020 fact sheet. https://www.unaids.org/en/resources/fact-sheet
2HIV.gov; HIV BASICS : Overview : About HIV & AIDS : Symptoms of HIV ; https://www.hiv.gov/hiv-basics/

overview/about-hiv-and-aids/symptoms-of-hiv
3Centers for Disease Control and Prevention (CDC); HIV Basics: HIV Transmission ; https://www.cdc.gov/hiv/

basics/transmission.html
4 World Health Organization (WHO) - HIV/AIDS ; https://www.who.int/news-room/fact-sheets/detail/hiv-aids
5AIDES - La PrEP ; https://www.aides.org/prep
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can be controlled thanks to the vaccination, even if the basic reproduction number is greater than 1.
Nowadays, we may see this preventing method as the use of PrEP. In [15, 16], a compartment for
individuals under PrEP is included into classical SICA epidemiological models. Parameters of model in
[16] are adjusted with clinical data and the effectivness of PrEP is mathematically proven. In [17], the
autors divided the compartment of PrEP users according to the adherence of users to the treatment.
They shown that with at least 70% of PrEP users it the male homosexual population, the HIV epidemic
can be effectively controlled. And finally, in [18], they have combined the use of PrEP and the screening
of individuals and confronted their model to Portuguese data. The authors underlined that screening of
individuals and the use of PrEP are necessary to fight against the HIV epidemic.

In our paper, we present a compartmental model SIP (susceptible - infected - protected), inspired
from [16], with an age structure on the compartment of the PrEP users (protected). In our model, age
represents the time since an individuals started a new 3 month period of PrEP. Furthermore, it takes into
account the fact that an individual may stop the treatment every three month, when the global screening
is proposed to renew the treatment, which was not considered in [16]. This three-months period is
represented by a parameter τ . Two choices are then offered at the end of this three-months period :
to continue the treatment and so remain in the PrEP compartment, or to stop the treatment and thus
become susceptible again. This choice is quantified by a parameter θ ∈ [0, 1]. Moreover, each month,
some individuals may begin the treatment and then enter in the PrEP compartment. It is measured by
a parameter ψ.

The construction of this model comes from [19] where the authors suggest a SIR (Susceptible - Infected
- Recovered) compartmental model with an age-structured phase of protection with limited duration. Our
goal is to improve this model by considering a nonlinear function of the susceptibles. Moreover, we decide
to endow the parameter ψ with a temporal dynamic. Those modifications are done in order to fit real
data and to be able to correspond exactly to the real situation of the use of PrEP. All this construction
leads us to a linear and a nonlinear difference-differential model with discrete delay. We make a complete
mathematical study of the model, analysis stability and investigate some precise subcases of our model.
Then, we compare our model to official clinical French data in order to understand the role that the
PrEP have in the dynamic of the HIV/AIDS epidemic. With some numerical simulations, we see that if
we choose a logisitc equation for the parameter ψ and a Hill function for the dynamic of S, we perfectly
fit our data. Then, we can also claim that the use of PrEP in a certain small proportion of a precise
population enables to reduce the spread of the HIV significantly on the long term.

2 A SI model with age-structured compartment of PrEP protec-
tion

In the next section, we study an HIV/AIDS infection model, inspired from [16] , with an age-structure in
the PrEP compartment. Then, we give existence, uniqueness and positivity of the solutions. We compute
the basic reproduction number R0 and study the equilibria and invstigate their stability.

2.1 Construction and reduction of our model
As previously done in [16], we divide our total population N into five compartments : susceptibles (S),
infected (I), infected under ART (tritherapy) (C), infected at AIDS stage (A) and individuals under PrEP
(P).

First of all, we make the following assumption : we suppose that individuals in (C) and (A) cannot
be contaminated (they already are) and cannot contaminated. Indeed, individuals in (C) cannot contam-
inate thanks to the effectiveness of the antiretroviral therapy and individuals in (A) do not contaminate
as they behave with caution due to their stage of infection. Thus, we do not take into account equations
for (C) and (A).

Now, we give an age structure to the class (P) of individuals following the PrEP program, inspired
from [19]. We consider that the PrEP is taken by an individual within a limited duration τ . We know
that each 3 months, an individual under PrEP has a global screening. We then assume that, after a
period of τ unity, an individual might decide to stop or continue his treatment. We will then fix τ = 3
months.

We define (t, a) 7−→ p(t, a) as the age distribution of the population under PrEP, in other words, the
number of individual under PrEP since a 6 τ unity at time t. Here, the age represents the time since an
indivudual is under PrEP. The total number of individual under PrEP at time t is then :

P (t) =

∫ τ

0

p(t, a)da,
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Then, we get the following model :{
S′(t) = σ − βI(t)S(t)− (µ+ ψ)S(t) + (1− θ)p(t, τ),
I ′(t) = βI(t)S(t)− µI(t),

with t ∈ R+. (1)

with nonnegative inital conditions :

S(0) = S0, I(0) = I0 and p(0, a) = p0(a), 0 < a < τ

It is a classical model SI with an additional term in the first equation. This term represents individuals
who come from the (P) compartment when they decided to stop their treatment.
This is summarized in Figure 2 bellow :

Figure 2: Representation of interactions within our population of susceptibles(S), Infected(I) and PrEp
users (P). Continuous arrows represent movements between compartments. Dashed arrow represents the
way infection is transmitted.

The description of the parameters is in the next Table 1 :

Symbols Signification Unity
ψ Rate that a susceptible begins PrEP treatment
θ Probability that an individual remains under PrEP
σ Recruitment individuals
µ Natural death rate individual.month−1

β HIV transmission rate per infective individual
τ Duration of the period of PrEP taking month

Table 1: Table of parameters used in the system (1)

Remark 1. We then have θ ∈ ]0, 1[.

We know that the distribution (t, a) 7−→ p(t, a) follows the next PDE with the corresponding boundary
condition : 

∂p

∂t
(t, a) +

∂p

∂a
(t, a) = −µp(t, a), 0 < a < τ,

p(t, 0) = ψS(t) + θp(t, τ).

(2)

Indeed, let us consider a group of individuals of age included in a small interval of age ∆a. The
number of individuals in this group is p(t, a)∆a. During a small interval of time ∆t, then the individuals
at time t+ ∆t are a+ ∆t time-old. Thus, the number of these individuals is p(t+ ∆t, a+ ∆t)∆a. Both
groups are the same, but some individuals died. Here, µ represents rate of natural death. The number
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of individuals that dies between a and a+ ∆a at time t is µp(t, a)∆a. During the entire interval of time
∆t, this number is µp(t, a)∆a∆t. Thus, we can write a conservation law as :

p(t+ ∆t, a+ ∆t)∆a− p(t, a)∆a = −µp(t, a)∆a∆t ⇐⇒ p(t+ ∆t, a+ ∆t)− p(t, a)

∆t
= −µp(t, a)

If we suppose at least p differentiable, at the limit we get :

lim
∆t−→0

p(t+ ∆t, a+ ∆t)− p(t+ ∆t, a)

∆t
=
∂p(t, a)

∂a
and lim

∆t−→0

p(t+ ∆t, a)− p(t, a)

∆t
=
∂p(t, a)

∂t

And thus, we get :

lim
∆t−→0

p(t+ ∆t, a+ ∆t)− p(t, a)

∆t
= lim

∆t−→0

p(t+ ∆t, a+ ∆t)− p(t+ ∆t, a)

∆t

+ lim
∆t−→0

p(t+ ∆t, a)− p(t, a)

∆t

=
∂p(t, a)

∂a
+
∂p(t, a)

∂t
= −µp(t, a)

We can solve this equation using the characteristics method (we can use [20]) and we obtain, for t > 0
and a ∈ [0, τ ],

p(t, a) =

{
e−µtp(0, a− t) = e−µtp0(a− t), 0 ≤ t ≤ a,

e−µτp(t− a, 0), t > a.

We then define :
u(t) := p(t, 0), t ≥ τ.

We now rewrite the age-structured equation of the (P) class :

P (t) = e−µt
∫ t

t−τ
eµau(a)da, t ≥ τ. (3)

Thus, we get the complete model, with the same initial condition :
S′(t) = σ − βI(t)S(t)− (µ+ ψ)S(t) + (1− θ)e−µτu(t− τ),
I ′(t) = βI(t)S(t)− µI(t),

P (t) = e−µt
∫ t

t−τ
eµau(a)da,

u(t) = ψS(t) + θe−µτu(t− τ),

with t > τ. (4)

S(0) = S0, I(0) = I0, and u(t) = ϕ(t), −τ 6 t 6 0,

Remark that the third equation of (2) depends only on u. The other equations of (2) are independent of
P . Then, we get our final complete model with the corresponding initial conditions : S′(t) = σ − βI(t)S(t)− (µ+ ψ)S(t) + (1− θ)e−µτu(t− τ),

I ′(t) = βI(t)S(t)− µI(t),
u(t) = ψS(t) + θe−µτu(t− τ),

with t > τ. (5)

S(0) = S0, I(0) = I0, and u(t) = ϕ(t), −τ 6 t 6 0, (6)

The problem which consists in equation (5) with initial conditions (6) is a coupled system of differential
and difference equations with discrete delay.

Remark 2. Knowing that P (t) = e−µt
∫ t

t−τ
eµau(a)da, we get the formula :

P ′(t) = −µe−µt
∫ t

t−τ
eµau(a)da+ e−µt

(
eµtu(t)− eµ(t−τ)u(t− τ)

)
.

Then, substituting u(t) by its expression , we get :

P ′(t) = −µP (t) + ψS(t) + (θ − 1)e−µτu(t− τ). (7)

Also, we define the total population as

N(t) = S(t) + P (t) + I(t), (8)
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we then have
N ′(t) = S′(t) + I ′(t) + P ′(t) = σ − µN(t).

We easily get that N(t) =

(
N0 −

σ

µ

)
e−µt +

σ

µ
. And thus,

lim
t−→+∞

N(t) =
σ

µ
(9)

2.2 Well-posedness of the problem
This subsection is dedicated to existence, uniqueness, positivity and boundedness of solutions of our
model (5).

2.2.1 Existence and uniqueness

In that aim, we could rewrite our system (5) as a neutral diferential equation as in [21]. But, we prefer
using the step method.

Theorem 2.1. For each nonnegative initial value (S0, I0, ϕ), with ϕ ∈ C0([−τ, 0]), the model (5) has a
unique solution defined on [−τ ; +∞[.

Proof. We first solve the system (5) on [−τ, 0]. In this cas, we have the following system : S′(t) = σ − βI(t)S(t)− (µ+ ψ)S(t) + (1− θ)e−µτϕ(t),
I ′(t) = βI(t)S(t)− µI(t),
u(t) = ψS(t) + θe−µτϕ(t),

with t ∈ [−τ ; 0].

We have a system of ODE on (S, I) and u is completely defined. As S and I are at least supposed
continuous, by the theorem of Cauchy-Lipschitz, this system has a unique solution on [−τ ; 0]. Then, we
repeat this method on each interval of type [kτ, (k + 1)τ ] with k ∈ N. This system has a unique solution
by Cauchy-Lipschitz as we know the solution on [−τ, kτ ]. Thus, we get a unique solution on [−τ ; +∞]
of (5).

2.2.2 Positivity

Now, we investigate the nonnegatvity of solutions of (5).

Proposition 2.2. For any nonnegative initial conditions (S0, I0, ϕ) ∈ R+ × R+ × C0([−τ, 0],R+), the
corresponding solution (S, I, u) of system (5) is nonnegative.

Proof. We first proove the nonnegativity on the interval [0, τ ] and then we repeat our result on intervals
[kτ, (k + 1)τ ], for k ∈ N∗. Let us consider a solution of (5) (S, I, u) associated to the initial condition
(S0, I0, ϕ) ∈ R+ × R+ × C0([−τ, 0],R+). Since t ∈ [0, τ ], we have t− τ ∈ [−τ, 0]. We rewrite our system
(5) on [−τ, 0] as :  S′(t) = σ − βI(t)S(t)− (µ+ ψ)S(t) + (1− θ)e−µτϕ(t),

I ′(t) = βI(t)S(t)− µI(t),
u(t) = ψS(t) + θe−µτϕ(t),

Thus
S(t) = 0 gives S′(t) = σ + (1− θ)e−µτϕ(t) > 0

I(t) = 0 gives I ′(t) = 0 > 0

Then applying Theorem 3.4 of [22], we get that S(t), I(t) > 0 on [0, τ ]. Looking at the last equation, we
easily get that u(t) = ψS(t) + θeµτϕ(t− τ) > 0 on [0, τ ].
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2.2.3 Boundedness

And finally, we study the boundedness of solutions of (5).

Proposition 2.3. Solutions of our system (5) are uniformly bounded.

Proof. Let (S, I, u) be solutions of (5) associated to the initial conditions (S0, I0, ϕ) ∈ R+ × R+ ×
C0([−τ, 0],R+). Equation (8) gives us that for all t > 0, 0 6 I(t), S(t) 6 N(t). Then equation (9)
gives :

0 6 lim sup
t−→+∞

S(t) 6
σ

µ
and 0 6 lim sup

t−→+∞
I(t) 6

σ

µ
.

We can deduce that S and I are uniformly bounded.
To obtain that u is uniformly bounded, we use section 9.3 of [21]. We rewrite the equation on u of (5) as
:

u(t) = ψS(t) + θe−µτu(t− τ) ⇐⇒ Dut = h(t),

where ut(α) := u(t+ α), h(t) := ψS(t) and Dy := −θe−µτy(−τ) + u(0) for t > 0.
We observe that ||D|| := sup

||ϕ||61

|Dϕ| = θe−µτ < 1. This implies that the zero solution of the homogeneous

linear difference equation Dut = 0 is globally asymptotically stable. Thus, D is a stable operator and we
can use Theorem 3.5 of [21] and get constants C > 0, γ > 0 such that for t > 0 :

|u(t)| 6 C

[
|ϕ|e−γt + ψ sup

06s6t
|S(s)|

]
,

Thus u is bounded. Now, since t 7−→ S(t) is uniformly bounded, there exists K > 0 such that for every
t > 0, we have |S(t)| < K, i.e. sup

t>0
|S(t)| < K. We have :

|u(t)| 6 C (|ϕ|+ ψK) , for all t > 0.

And finally, we get that u is uniformly bounded and :

sup
t>0
|u| < K̃, for all t > 0.

2.3 Characterization and study of steady-states
Here, we investigate the existence of steady-states for the system (5). Let us consider such an equilibrium
(S∗, I∗, u∗) of (5). Then :  0 = σ − βI∗S∗ − (µ+ ψ)S∗ + (1− θ)e−µτu∗,

0 = βI∗S∗ − µI∗,
u∗ = ψS∗ + θe−µτu∗.

(10)

Last equation of (10) gives us the solution for u∗ :

u∗ =
ψS∗

1− θe−µτ
. (∗)

The second equation of (10) gives us a condition :

I∗ (βS∗ − µ) = 0 ⇐⇒ I∗ = 0 or S∗ =
µ

β
.

Consider each case.

2.3.1 The disease-free steady-state (S0, I0, u0)

If I∗ = 0.
The first equation of (10) and (∗) give :

0 = σ − (µ+ ψ)S∗ + (1− θ)e−µτu∗ ⇐⇒ S∗ =
σ(1− θe−µτ )

µ+ ψ − (µθ + ψ)e−µτ
.
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Then using the expression of S∗ in (∗), we get :

u∗ =
ψσ

µ+ ψ − (µθ + ψ)e−µτ
.

Those two formulas have a biological meanning if and only if µ+ψ− (µθ+ψ)e−µτ > 0, which is provided
if µ + ψ > 0. Thus, under the condition µ + ψ > 0, we have existence of a disease-free equilibrium (as
I∗ = 0) given by :

(S0, I0, u0) :=

(
σ(1− θe−µτ )

µ+ ψ − (µθ + ψ)e−µτ
, 0 ,

ψσ

µ+ ψ − (µθ + ψ)e−µτ

)
. (11)

2.3.2 The endemic steady-state (S, I, u)

Let us now consider S∗ =
µ

β
.

We directly get the form of u∗ :

u∗ =
µψ

β(1− θe−µτ )
.

We check first if the denominator is non zero :

1− θe−µτ = 0 ⇐⇒ θ = eµτ .

However eµτ > 1. Thus, Remark 1 gives a contradiction. The denominator never vanishes. Then, using
the first equation of (10), we get :

I∗ =
σ

µ
− µ+ ψ − (ψ + µθ)e−µτ

β(1− θe−µτ )
.

This last result gives us a condition on the existence of this equilibrium through the biological feasibility
:

I∗ > 0 ⇐⇒ σ

µ
>
µ+ ψ − (ψ + µθ)e−µτ

β(1− θe−µτ )
.

Thus, under this previous condition, we obtain the existence of one endemic equilibrium defined by the
following expressions :

(S, I, u) :=

(
µ

β
,
σ

µ
− µ+ ψ − (ψ + µθ)e−µτ

β(1− θe−µτ )
,

µψ

β(1− θe−µτ )

)
. (12)

Remark 3. Using equation (7), we get the explicit value of the equilibrium on P :

P ∗ =
1

µ

[
ψS∗ + (θ − 1) exp−τµ u∗

]
.

We sum up the previous calculations in the following theorem :

Theorem 2.4. Suppose that the following condition holds :

σ

µ
>
µ+ ψ − (ψ + µθ)e−µτ

β(1− θe−µτ )
(H)

Then, system (5) has two steady-states : one disease-free equilibrium defined by equation (11) and one
endemic equilibrium defined by relation (12). If the previous condition (H) does not hold, then only the
disease-free equilibrium exists.

2.4 The basic reproduction number R0

We compute here the basic reproduction number R0, which definition is given in [23]. Since we are not
in presence of an ODE system, we cannot use the next generation matrix method, explained in [24], in
order to compute R0.
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Rewrite the second equation of (5) as :

I ′(t) = I(t) [βS(t)− µ] ⇐⇒ I ′(t)

µI(t)
=
βS(t)

µ
− 1.

As the product µI(t) > 0, if the left member in the previous equation is negative, it means that I ′(t) is
negative and that the infection vanishes. Else, the left-hand side is nonnegative, then I ′(t) is nonnegative
and the infection continues. In other words, the infection triggers if and only if

βS(t)

µ
− 1 > 0 ⇐⇒ βS(t)

µ
> 1.

Then, the basic reproduction number R0 of our system (5) is given by :

R0 :=
βS0

µ
=

βσ(1− θe−µτ )

µ(µ+ ψ − (µθ + ψ)e−µτ )
. (13)

Remark 4. We see that condition (H) in Theorem 1.4 is equivalent to R0 > 1. Then the existence of
the endemic equilibrium is equivalent to R0 > 1.

We get easily the following proposition about the behaviour of R0.

Proposition 2.5. The number R0 is a decreasing function as a function of τ , ψ and θ. Also, we have

sup
τ∈[0,+∞[

R0(τ) = R0(τ = 0) =
βσ

µ2
and inf

τ∈[0,+∞[
R0(τ) = lim

τ−→+∞
R0(τ) =

βσ

µ(µ+ ψ)

sup
ψ∈[0,+∞[

R0(ψ) = R0(ψ = 0) =
βσ

µ2
and inf

ψ∈[0,+∞[
R0(ψ) = lim

ψ−→+∞
R0(ψ) = 0

sup
θ∈[0,1]

R0(θ) = R0(θ = 0) =
βσ

µ(µ+ ψ(1− e−µτ ))
and inf

θ∈[0,1]
R0(θ) =

βσ

µ(µ+ ψ)

Proof. We show this result for τ . The techniques are the same for the other variables.
The derivative of the function τ 7−→ R0(τ) is

R′0(τ) =
µ2ψβσe−µτ (θ − 1)

[µ(µ+ ψ − (µθ + ψ)e−µτ )]
2

As the denominator is positive, the sign is given by the numerator. Since θ ∈ [0, θ], we get that θ−1 6 0,
thus R′0(τ) 6 0 for every τ . Then the function τ 7−→ R0(τ) is nonincreasing. As τ 7−→ R0(τ) is
continuous, we get that the maximum is reached at τ = 0 and the minimum, which is actually an
infimum, is reached when τ −→ +∞.

This proposition shows that there is at least three ways to reduce the R0. We will have to find the
perfect combination of those three paramaters in order to make the R0 as small as possible, at least less
than 1. Moreover, those parameters describe the way the PrEP is used. Thus, the PrEP treatment has
a non-negligible role in the behaviour of the HIV/AIDS epidemic and may be powerfull to reduce it.

2.5 Local asymptotic stability of the steady-states
In this section, we aim at studying the local stability of the equilibria considering both cases of R0 > 1
and R0 < 1. Let us first linearize our system (5) about an equilibrium (S∗, I∗, u∗). The last row is
already linear. We write the Jacobian of the two first rows evaluated in a steady-state and get the next
matrix :

J =

(
−βI∗ − (µ+ ψ) −βS∗

βI∗ βS∗ − µ

)
.

Then, our linearized system is : S′(t) = −βI∗S(t)− βS∗I(t)− (µ+ ψ)S(t) + (1− θ)e−µτu(t− τ),
I ′(t) = βI∗S(t) + βI(t)S∗ − µI(t),
u(t) = ψS(t) + θe−µτu(t− τ).

t > τ (14)
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We now look for solutions of the form S(t) = eλtS0, I(t) = eλtI0 and u(t) = eλtu0, with (S0, I0, u0) 6=
0. After simplifying by eλt, we obtain the algebraic system λS0 = −βI∗S0 − βS∗I0 − (µ+ ψ)S0 + (1− θ)e−µτe−τλu0,

λI0 = βI∗S0 + βI0S
∗ − µI0,

u0 = ψS0 + θe−µτe−τλu0.

Then, we rewrite this previous system as a matrix system : λ+ βI∗ + µ+ ψ βS∗ −(1− θ)e−µτe−τλ
−βI∗ λ− βS∗ + µ 0
−ψ 0 1− θe−µτe−τλ

 S0

I0
u0

 =

 0
0
0

 .

The characteristic equation is given by∣∣∣∣∣∣
λ+ βI∗ + µ+ ψ βS∗ −(1− θ)e−µτe−τλ

−βI∗ λ− βS∗ + µ 0
−ψ 0 1− θe−µτe−τλ

∣∣∣∣∣∣ = 0. (15)

Then, computing this determinant, our characteristic equation becomes :

∆(λ, τ) = 0, (16)

where ∆(λ, τ) is given by :

∆(λ, τ) := λ2 + (2µ+ β(I∗ − S∗) + ψ)λ+ µ(β(I∗ − S∗) + ψ)− ψβS∗

− e−µτe−τλ
[
θ(λ2 + (µ+ β(I∗ − S∗))λ+ µ(µ+ β(I∗ − S∗)) + ψλ+ ψ(µ− βS∗)

]
.

Remark 5. We notice that the function ∆(λ, τ) defined in (16) is an entire function of λ. Thus, this
function must have at most countably many zeros. And by the principle of isolated zeros, the set of those
zeros cannot have an accumulation point. So, if we take a sequence of roots (λn)n ∈ CN of (16), this one
verfies lim

n−→+∞
|λn| = +∞.

Moreover, we rewrite our equation (16) as it follows :

1 +
2µ+ β(I∗ − S∗) + ψ)

λ
+
µ(β(I∗ − S∗) + ψ)− ψβS∗

λ2

− e−µτe−µλ
[
θ(1 +

µ+ β(I∗ − S∗)
λ

+
µ(µ+ β(I∗ − S∗)

λ2
+
ψ

λ
+
ψ(µ− βS∗)

λ2

]
= 0

subtituting by such a sequence and taking the modulus in the previous equation, we have that, as n −→
+∞, the sequence (λn)n approaches one root of the roots of the equation :

eλτ − θe−µτ = 0

which are
λ̃k =

ln(θ)− µτ
τ

+
2kπi

τ
with k ∈ Z

As θ ∈]0, 1[, we see that each root that appears from infinity has a negative real part.

2.5.1 Local stability without delay, ie τ = 0

We study here the stability of our system with no delay. The determinant given by (15) becomes∣∣∣∣∣∣
λ+ βI∗ + µ+ ψ βS∗ θ − 1

−βI∗ λ− βS∗ + µ 0
−ψ 0 1− θ

∣∣∣∣∣∣
Summing the second and third rows to the first one, and computing the determinant, the characteristic
equation for τ = 0 is given by :

(1− θ)(λ+ µ)(λ+ µ+ β(I∗ − S∗)) = 0 (17)

Now, let us check the stability of our steady-states. We get the two following results.
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Proposition 2.6. For τ = 0, we get the following stability : if R0 < 1 the disease-free equilibrium, given
by (11), is the unique steady-state and is locally asymptotically stable. Else, R0 > 1, both of the steady-
states coexist and the disease-free is unstable and the endemic one, given by (12) is locally asymptotically
stable.

Proof. Let us consider the disease-free equilibrium (S0, I0, u0) given by (11). The equation (17) applied
to the disease-free is :

(1− θ)(λ+ µ)(λ+ µ− βS0) = 0 ⇐⇒ (1− θ)(λ+ µ)(λ+ µ(1−R0)) = 0.

This equation gives us that
λ+ µ = 0 or λ+ µ(1−R0) = 0,

λ = −µ or λ = µ(R0 − 1)

Thus, we see that if R0 < 1 then λ = µ(R0 − 1) < 0 and we have both of the roots that are negative, we
conclude that the disease-free equilibrium is locally asymptotically stable.

But, if R0 > 1, then λ = µ(R0 − 1) > 0 and the disease-free equilibrium is unstable as one of the
eigenvalues is positive.

Let us consider the endemic equilibrium (S, I, u) given by (12). The equation (17) applied to the
endemic steady-state is :

(1− θ)(λ+ µ)(λ+ µ+ β(I − S)) = 0 ⇐⇒ (1− θ)(λ+ µ)(λ+ βI) = 0.

And then, we see that the two roots are

λ = −µ and λ = −βI

As I > 0, we get that all the roots are negative. Then, for R0 > 1, the endemic steady-state is locally
asymptotically stable.

2.5.2 Local stability of the disease-free equilibrium

The linearized system (14) evaluated in the disease-free equilibrium (S0, I0, u0) (11) is : S′(t) = −βS0I(t)− (µ+ ψ)S(t) + (1− θ)e−µτu(t− τ),
I ′(t) = βI(t)S0 − µI(t),
u(t) = ψS(t) + θe−µτu(t− τ).

As previously, we compute the caracteristic equation around the disease-free equilibrium and we get :

∆(λ, τ) := (λ+ µ− βS0)(λ+ µ+ ψ − (θ(λ+ µ) + ψ)e−µτe−λτ ) = 0 (18)

From now on, let us set R0 < 1. The eigenvalue given by λ = µ(−1 +R0) is then negative. We must now
assure that the roots λ (i.e. the eigenvalues of the linearized system around the disease-free equilibrium)
of the equation :

λ+ µ+ ψ − (θ(λ+ µ) + ψ)e−µτe−λτ = 0 (19)

have a negative real part. We get the following theorem :

Theorem 2.7. Suppose that R0 < 1. The disease-free equilibrium given by (11) is locally asymptotically
stable.

Proof. In order to get this demonstration, we must show that all the roots of the previous characteristic
equation (19) have a negative real part. Indeed, we already shown in remark 4 that all the roots that
come from the infinity have a negative real part. Thus, we consider the roots that appears in a bounded
set. Let us consider the disease-free equilibrium (S0, 0, u0).

First, we notice that f : (λ, τ) ∈ C× [0,+∞[ 7−→ λ+ µ+ ψ − (θ(λ+ µ) + ψ)e−µτe−λτ is C1 in both
of variables. We notice that the partial derivate on the second variable is not zero. We can then use the
implicit functions theorem and study the roots λ as a C1 function of τ . We also consider R0 as a function
in τ , τ 7−→ R0(τ), with τ ∈ R+.
For τ = 0, we have already shown that the equilibrium is stable thanks to proposition 1.6.
Let us now chose a fixed τ ∈]0,+∞[ and let us seek a pure imaginary root ±iω, with ω ∈ R. Indeed, if
there exists such a root of (19), then, by the continuity of τ 7−→ λ(τ) and the remark 5, we can assure
that there exists roots with positive real part.
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Substituting λ in (19) and defining :

η := θe−µτ and ρ := (θµ+ ψ)e−µτ ,

and thus we get :
iω + µ+ ψ − (ηλ+ ρ)e−iωτ = 0.

And then, separating the real and the imaginary part, we get the following system :{
ηω cos(ωτ)− ρ sin(ωτ) = ω,
ηω sin(ωτ) + ρ cos(ωτ) = µ+ ψ.

Solving this system, we get :
cos(ωτ) =

1

(ηω)2 + ρ2

[
ηω2 + ρ(µ+ ψ)

]
,

sin(ωτ) =
1

(ηω)2 + ρ2
[−ρω + ηω(µ+ ψ)]

Using the well-known formula cos(ωτ)2 + sin(ωτ)2 = 1, we get :

1 =
1

((ηω)2 + ρ2)2

[
(ηω2 + ρ(µ+ ψ))2 + (−ρω + ηω(µ+ ψ))2

]2
Expanding this expression and factoring in ω, we have :

η2(η2 − 1)ω4 + (2ρ2η2 − ρ2 − η2µ2 − η2ψ2 − 2η2)ω2 + ρ2(ρ2 − µ2 − 2µψ − ψ2) = 0

⇐⇒ η2(η2 − 1)ω4 +
[
ρ2(η2 − 1) + η2(ρ− (µ+ ψ))(ρ+ µ+ ψ)

]
ω2 + ρ2(ρ− (µ+ ψ))(ρ+ µ+ ψ) = 0

⇐⇒ aX2 + bX + c = 0

with X := ω2 as a change of variables and

a := η2(η2−1) ; b := ρ2(η2−1)+η2(ρ− (µ+ψ))(ρ+µ+ψ) and c := ρ2(ρ− (µ+ψ))(ρ+µ+ψ)

We can notice the following facts : as η 6 1, we have that a < 0. Then, c is also negative since we have
ρ < µ+ ψ. And finally, b is negative thanks to the same reasons.
As the three coefficients are negative, the Routh-Hurwitz criterion tells us that all roots of our equation
have a negative real part. In other words, there exists α < 0 and β ∈ R such as X = α ± iβ. Then we
have :

X = α+ iβ ⇐⇒ ω2 = α+ iβ =⇒ ω2 = α

the last equality is absurd since ω2 > 0 and α < 0.
Thus, for every τ > 0, it does not exist ω > 0 such as λ = ±iω.

And for R0(τ) < 1, oth τ > 0 all roots of (19) have negative real part. Thus, (S0, 0, u0) is locally
asymptotically stable.

2.5.3 Local asymptotic stability of the endemic equilibrium

Now we are interested in the study of the stability of the endemic stead-state given by (12) for a τ > 0.
First, we suppose in this subsection that R0 > 1.

Taking the determinant (15) applied to the endemic equilibrium, we get :∣∣∣∣∣∣
λ+ βI + µ+ ψ βS −(1− θ)e−µτe−τλ

−βI λ− βS + µ 0
−ψ 0 1− θe−µτe−τλ

∣∣∣∣∣∣ = 0. (20)

Summing the second and third row to the first one and computing it, we get the characteristic equation :

∆(λ, τ) = 0 (21)

where ∆(λ, τ) is given by :

∆(λ, τ) := λ2 + (ψ + µ+ βI)λ+ µβI −
[
θ(λ2 + (µ+ βI) + λµβI) + ψλ

]
e−µτe−τλ = 0 (22)

Then, in order to study the stability, we follow the same steps as the proof of theorem 1.8. We still
consider R0 and λ as function of the variable τ .
Thanks to the proposition 1.7, we have already shown that the endemic equilibrium is locally asymptot-
ically stable for τ = 0 with R0(τ) > 1. We then show the result for any τ > 0 following the same steps
as in Theorem 1.8.
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Theorem 2.8. Let us take τ > 0 and assume that R0(τ) > 1. Then, all the roots of (21) have negative
real part and thus the endemic equilibrium is locally asymptotically stable.

Proof. We follow the same steps as in the proof of theorem 1.8. We show that there is no purely imaginary
roots λ = ±iω and we can assume ω > 0. Separating real and imaginary parts in equation (18), we get
the system : {

ρω cos(ωτ)− ηω sin(ωτ) = ω2 − b,
ηω cos(ωτ)− ρω sin(ωτ) = (ψ + a)ω.

with
a := µ+ βI ; c := e−µτ ; b := µβI

η := c(θa+ ψ) and ρω := cθ(ω2 − b)
Then, solving this system and using the same formula as in the proof of Theorem 1.8, we get

ρ2
ω + (ηω)2 = ω2(ψ + a)2 + (ω2 − b)2.

Expanding this expression, we have that X := ω2 satisfies the equation :

X2 +DX + b2 = 0, (23)

with

D :=
(ψ + a)2 + 2b((θc)2 − 1)− η2

1− (θc)2
.

Let us show that D is nonnegative. By absurd, let us suppose that D < 0. Then, the discriminant of the
equation (19) is

∆ = D2 − 4b2 = (D − 2b)(D + 2b)

We clearly see that D − 2b < 0. Moreover, let us compute :

(1− (θc)2)(D + 2b) = (ψ + a)2 − η2 = (ψ + a+ η)(ψ + a− η)

But
ψ + a+ η = ψ + a− cθa− cψ = ψ(1− c) + a(1− cθ) > 0

Then necessarily, as 1−(θc)2 > 0 and (ψ+a+η)(ψ+a−η) > 0, we have D+2b > 0. Thus, ∆ < 0 and the
equation has complexe roots, in other words, there exists u, v ∈ R, with v 6= 0, such as x = ω2 = u+ iv,
which is absurd.
So, D is positive. The Routh-Hurwitz criterion gives us that equation (19) has roots with negative real
part, ie there exists ũ < 0 and v ∈ R such as x = ω2 = u+ iv, which implies ω2 = u, but it is impossible.
Thus, there does not exists ω such as λ = ±iω. And then, we cannot have a change of stability and all
λ has negative real part. So, the endemic equilibrium is locally asymptotically stable.

2.6 Uniform persistence of the disease
In this section, we study the persistence of the disease. First, we assume that R0 > 1.
The persistence of the disease is defined in [25] and [26] by

∃ ε > 0, I0 > 0 =⇒ lim inf
t−→+∞

I(t) > ε.

Indeed, the assumption R0 > 1 is not incompatible with the disappearance of the disease. But, in this
section, we show that, even if R0 > 1, the disease persists.

2.6.1 Study and stability of an auxiliary system

In this subsection, we are interested in the study of the following system : x′(t) = σ − (µ+ ψ)x(t) + (1− θ)e−µτv(t− τ),
v(t) = ψx(t) + θe−µτv(t− τ),
x(0) = x0, v(z) = ϕ(z), for − τ 6 z 6 0

with t > 0. (24)

We easily compute that this system has a unique equilibrium (x0, v0) given by

x0 :=
σ(1− θe−µτ )

µ+ ψ − (θµ+ ψ)e−µτ
; v0 :=

ψ

1− θe−µτ
x0 (25)

And then, the main theorem we have is the following :
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Theorem 2.9. For any initial condition (x0, ϕ) ∈ R+ × C0([−τ ; 0],R+), we have that the solution
(x(t), v(t)) of (24) satisfies

(x(t), v(t)) −−−−−→
t−→+∞

(x0, v0)

In other words, the steady-state (x0, v0) given by (25) is globally asymptotically stable.

Proof. We first set : {
x̂(t) := x(t)− x0,
v̂(t) := v(t)− v0.

(26)

Then, those variables satisfy the following linear differential-difference system :{
x′(t) = −(µ+ ψ)x(t) + (1− θ)e−µτv(t− τ),
v(t) = ψx(t) + θe−µτv(t− τ).

with t > 0. (27)

Our system (26) is a difference-differential system. We show that it is also an input-to-state system.
The definition can be found in [27]. This implies that the trivial steady-state is globally asymptotically
stable. In order to proove it, we use the Theorem 3 in [27].
Let us define the following function V : R× C0([−τ, 0],R) −→ R given by

V (x0, ϕ) =
x2

0

2
+ ξ

∫ 0

−τ
ϕ2(s)ds,

with ξ > 0 a constant that we determine later.
First, we have the following functional inequality :

u(x0) 6 V (x0, ϕ) 6 v(||(x0, ϕ)||)

with u(x) := x2

2 and v(x) := (1 + τ)x2. Those functions are clearly continuous, nondecreasing, positive,
satisfy u(0) = v(0) = 0 and lim

a−→+∞
u(a) = +∞.

As shown in section 2.1, t 7−→ x̂ and t 7−→ v̂(t), solution of (24) are uniformly bounded.
Now, we want to show that our system is input-to-state (See[27]). This shows that our equilibrium is
globally asymptotically stable. .
Then, we differentiate the fonction t 7−→ V (x̂(t), v̂t) along the solution (x̂, v̂) of (24), we get for t > 0 :

dV

dt
(x̂, v̂t) = x̂′(t)x̂+ ξv̂2(t)− ξv̂2(t− τ)

= −(µ+ ψ − ξψ2)x̂2(t) +
[
(1− θ)e−µτ + 2ψθe−µτ

]
x̂(t)v̂2(t− τ)− ξv̂2(t− τ)

[
1− θ2(e−τµ)2

]
.

To use Theorem 3 of [27], we want to find ε > 0 such as

d

dt
V (x̂, v̂t) 6 −εx̂2(t).

Let us consider the function d
dtV (x̂, v̂t) + εx̂2(t) as a second order polynomial function of x̂. We compute

the discriminant of that polynom ∆̂ :

∆̂ = v̂2(t− τ)
[
((1− θ)e−µτ + 2ψθe−µτ )2 − 4ξ(µ+ ψ − ξψ2 − ε)(1− θ2(e−τµ)2)

]
To find such a ε, we must have the leading coefficient of this polynom and the discriminant negative. In
other words :

∆̂ < 0 and µ+ ψ − ξψ2 − ε > 0

Let us consider this discriminant as a function of ε, ε 7−→ ∆̂(ε). We easily see that this function is
continuous and has a positive derivative. As ε ∈]0; +∞[, if ∆̂(0) is negative, then by the continuity and
the monotonicity of ε 7−→ ∆̂(ε), we can find a ε > 0 such as ∆̂ < 0. As the term v̂2(t− τ) is positive, it
will not change the sign and we can "forget" it. Then we have

∆̂(0) = 4ξ2ψ2 + 4ξ(−ψ − µ+ µα2e−2τµ) + (1− θ)2e−2τµ = aξ2 + bξ + c := f(ξ),

with a := 4ψ2, b := 4(−ψ − µ+ µα2e−2τµ) and c := (1− θ)2e−2τµ.
The discriminant of this polynom is

∆f = b2 − 4ac = 16(−ψ + µ(α2e−2τµ − 1)2 − 16ψ2(1− θ)2e−2τµ > 0.
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The leading coefficient of f and its discriminant are positive, then f has a negative minimum reached at

ξ∗ :=
−b
2a

=
ψ + µ(1− (αe−µτ )2)

2ψ2
.

Thus f(ξ∗) < 0. Then, if we choose the constant ξ := ξ∗, we have that ∆̂(0) < 0 and we can find an
ε > 0 such as ∆̂ < 0.
Now, it is clear that we also can find a ε > 0 satisfying µ+ ψ − ξψ2 − ε > 0 as

µ+ ψ − ξψ2 − ε =
1

2
(ψ + µ(1− (αe−µτ )2)− ε.

Thus, we can apply Theorem 3 of [27] and we get that (25) is globally asymptotically stable.

2.6.2 A weak form of uniform persistence

We begin with a weak form of persistence (See [25]).

Theorem 2.10. Suppose that R0 > 1. Then, there exists a real ε > 0 such that for any initial condition
(S0, I0, ϕ) ∈ R+ × R∗+ × C0([−τ, 0],R+), we have

lim sup
t−→+∞

I(t) > ε.

Proof. We have R0 > 1, ie
βS0

µ
> 1 with S0 given in (11) by S0 =

σ(1− θe−µτ )

µ+ ψ − (µθ + ψ)e−µτ
.

Then, we can choose ε > 0 small enough in order to have

Rε0 :=
βS0

ε

µ
> 1 with S0

ε :=
σ(1− θe−µτ )

µ+ ψ − (µθ + ψ)e−µτ + βε(1− θe−µτ )
(28)

since lim
ε−→0

βε(1− θe−µτ ) = 0.

Notice that for any choice of ε > 0, we have S0 > S0
ε > 0. With the precise choice of ε satisfying (28),

we show that we get the result of our theorem.
Let us suppose that we have

lim sup
t−→+∞

I(t) 6 ε. (29)

It means that there exists Tε > 0 such that, for all t > Tε, we have sup
x>t

I(x) 6 ε. In particular, there

exists Tε > 0 such that for all t > Tε, we have I(t) 6 ε. Using the majoration in our initial system, we
get that ∀ t > Tε, {

S′(t) > σ − βεS(t)− (µ+ ψ)S(t) + (1− θ)e−µτu(t− τ),
u(t) = ψS(t) + θe−µτu(t− τ).

Now, we consider the system (24). Adding the term −βεS(t) to the first equation of system (24) and
we can easily adapt our results. We have already computed the corresponding steady-state (25). We are
going to use a comparison principle on this system.
Then, we can choose a ε̃ > 0 small enough such as

Rε,ε̃0 :=
β(S0

ε − ε̃)
µ

> 1 (30)

In the same time, using Theorem 2.9, we get a constant T ′ε̃, that we can choose satisfying T ′ε̃ > Tε > 0,
such as S̃ε(t) > S0

ε − ε̃, for all t > T ′ε̃, where S̃ε(t) is the solution of (24). Using a comparison principle
(see [28], Lemma 3.4) , we then have that S(t) > S̃ε(t) > S0

ε − ε̃ for all t > T ′ε̃.

Finally, let us choose a constant ξ > 0 such as
β(S0

ε − ε̃)
ξ + µ

> 1. And then, using the equation on I, we

have ∫ +∞

T ′ε̃

e−ξtI ′(t)dt =

∫ +∞

T ′ε̃

e−ξtI(t)(βS(t)− µ)dt.

Thanks to an integration by part, we have

−eξT
′
ε̃I(T ′ε̃) =

∫ +∞

T ′ε̃

e−ξtI(t)(βS(t)− µ− ξ)dt.

And then, by the choice of ξ, we get the following inequality

0 > −eξT
′
ε̃I(T ′ε̃) >

[
β(S0

ε − ε̃)− µ− ξ
] ∫ +∞

T ′ε̃

e−ξtI(t)dt > 0.

Thus, we have a contradiction with (29) and our theorem is demonstrated.
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2.6.3 Uniform persistence

In this subsection, we are going to show that the disease is uniformly persistent (See [25]).

Theorem 2.11. Assume R0 > 1. There exists a constant 0 < ε′ < ε, where ε > 0 is given by Theorem
2.10, such that for any initial condition (S0, I0, ϕ) ∈ R+ × R∗+ × C0([−τ, 0],R+), we have

lim inf
t−→+∞

I(t) > ε′.

Proof. First, from Theorem 2.10, we have that lim sup
t−→+∞

I(t) > ε. Then, there exists a positive sequence

(un)n such as un −→ +∞ and I(un) > ε. Indeed, as the function x 7−→ sup{I(t) ; t > x} is decreasing,
we have that lim sup

t−→+∞
I(t) > ε gives sup{I(t) ; t > x} > ε, ∀x. Also, by definition of supremum, for each

x, there exists a positive sequence uxn > x such as I(uxn) −→ sup{I(t) ; t > x}. By definition of the limit,
we can choose an index n′x such as I(uxn′x) > ε. Then, we can construct an increasing positive sequence
(un), choosing those previous indexes since x −→ +∞, such as I(un) > ε and un −→ +∞.

Now, we are going to prove our theorem by contradiction. We suppose that for every ε′ ∈ ]0, ε], there
exists an initial condition (S0, I0, ϕ) ∈ R+ × R∗+ × C0([−τ, 0],R+) such as

lim inf
t−→+∞

I(t) 6 ε′. (31)

Then, there exists two sequences, one positive and increasing (vn)n∈N and one positive and decreasing
(βn)n∈N such as

vn > un, lim
n−→+∞

βn = 0 and I(vn) < βn < ε′. (32)

Indeed, let us fix one ε′. Then we can chose another ε̃ ∈ ]0, ε′[ such as lim inf
t−→+∞

I(t) 6 ε̃ < ε′. Thus, we

have, for all x > 0, inf{I(t) ; t > x} 6 ε̃. By definition of the infinimum, we get a sequence (vxn)n that
we can chose greater than (un) such as I(vxn) −→ inf{I(t) ; t > x} and we can chose an index Ñ such as
I(vÑ ) < ε̃ < ε′. And finally, we get both sequences needed as previously.
We get that I(vn) < βn < ε′.
By continuity of t −→ I(t), there exists another sequence (αn)n, αn ]vn;un[ for all n, such as

I(αn) = ε and I(t) < ε, for all t ∈ ]αn;un[. (33)

Now, let us define two sequences (In)n and (Sn)n by In := ε and Sn := S(αn) for all n ∈ N. Both
sequences are bounded, we can extract a convergent subsequence that we denote also by (In)n and (Sn)n
and we have In = ε and lim

n−→+∞
Sn = ρ, with ρ ∈ R+.

We now consider the following problem :

w(t) =

{
ψρ+ θe−τµw(t− τ), t > 0,
ϕ(t), t ∈ [−τ, 0].

For each initial condition ϕ ∈ C0([−τ, 0],R) of the previous difference equation, we have a unique
continuous solution w on ]0,+∞[ (by the step method). Let (fn)n∈N ⊂ C0([−τ, 0],R) the functional
sequence defined by fn(x) = w(αn + x), x ∈ [−τ, 0], with αn > τ , for n large enough ; then we make a
translation in n to get αn > τ for all n ∈ N. Then, by definition we have

fn(x) = ψρ+ θe−µτfn(x− τ), for all n ∈ N, x ∈ [−τ, 0].

From the proposition 2.3, we get that the sequence (fn)n is uniformly bounded, then ponctually bounded
on [−τ, 0]. Moreover, for n ∈ N and x1, x2 ∈ [−τ, 0], we get

|fn(x1)− fn(x2)| = θe−τµ|fn(x1 − τ)− fn(x2 − τ)|,

6 (θe−τµ)Ñn+1|ϕ(αn + x1 − (Ñn + 1)τ)− ϕ(αn + x2 − (Ñn + 1)τ)|,
6 |ϕ(αn + x1 − (Ñ + 1)τ)− ϕ(αn + x2 − (Ñn + 1)τ)|.

with Ñn := bαn/τc.
Since ϕ is continuous on a compact set [−τ, 0], the Heine theorem gives us that ϕ is uniformly continuous
on [−τ, 0]. Thus, previous inequality and using the definition on the uniform continuity, we get that the
family (fn)n∈N is equicontinuous and uniformly equicontiunous as it is defined on a compact set. Hence,
the Arzela-Ascoli Theorem (see [29]) gives us that there exists a convergent subsequence of (fn), that
denote also by (fn) such as lim

n−→+∞
fn = f∗.
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Now, let us consider the solution of (5) corresponding to the following initatil conditions S0 = ρ, I0 = ε
and u0 = f∗ ∈ C0([−τ, 0],R+). We denote this solution by (S∞, I∞, u∞). From Theorem 2.10, there
exists a σ > 0 and we can find a 0 < m < σ, such that

I∞(σ) > ε and I∞(t) > m for all t ∈]0, σ[.

Next, we get the contradiction. For each n ∈ N, we define Ĩn(t) := I(αn + t), t > 0. From the two
previous inequalities, the continuity and the fact that

Ĩn(0) = In = ε, lim
n−→+∞

Sn = ρ, lim
n−→+∞

fn = f∗,

we have, recalling that lim
n−→+∞

βn = 0, for n large enough,

Ĩn(σ) > ε and Ĩn(t) > m > βn for all t ∈]0, σ[. (34)

On the other hand, for ṽn := vn − αn, we have from (31) and (32) that

Ĩn(ṽn) = I(vn) < βn < ε and Ĩn(t) = I(α+ t) < ε for all t ∈ ]0, ṽn[. (35)

Thus, we distinguish three different cases :

• σ < ṽn : The second inequality in (34) gives us that Ĩn(σ) < ε, which contradicts the first inequality
of (33).

• σ = ṽn : Then the first inequality of (33) contradicts the first of (34).

• σ > ṽn : The second inequality of (33) gives us that Ĩn(ṽn) > βn, which contradicts the first of
(34).

Thus, there exists ε′ ∈ ]0, ε], such that for any initial condition (S0, I0, ϕ) ∈ R+ × R∗+ × C0([−τ, 0],R+),
we have lim inf

t−→+∞
I(t) > ε′.

2.7 Global asymptotic stability
In this section, we study the global asymptotic stability of the equilibria of (5) defined by (11) and (12).
In order to get these results, we use Lyapunov technics and functions.

2.7.1 Global asymptotic stability of the disease-free steady-state

In this section, we show that the disease-free equilibrium defined by (11) of (5) is globally asymptotically
stable. In order to demonstrate this stability, we use an auxiliary difference-differential system. We show
that its equilibrium is globally asymptotically stable thanks to the Lyapunov theorem. And finally, we
apply a comparison theorem.
First, we assume that R0 < 1. We consider our model given by

S′(t) = σ − βI(t)S(t)− (µ+ ψ)S(t) + (1− θ)e−µτu(t− τ),
I ′(t) = βI(t)S(t)− µI(t),
u(t) = ψS(t) + θe−µτu(t− τ),
S(0) = S0, I(0) = I0, and u(t) = ϕ(t), −τ 6 t 6 0

with t > τ.

and the corresponding disease-free equilibrium

(S0, I0, u0) :=

(
σ(1− θe−µτ )

µ+ ψ − (µθ + ψ)e−µτ
, 0 ,

ψσ

µ+ ψ − (µθ + ψ)e−µτ

)
.

The solution of the previous system satisfies also the following system S′(t) 6 σ − (µ+ ψ)S(t) + (1− θ)e−µτu(t− τ),
u(t) = ψS(t) + θe−µτu(t− τ),
S(0) = S0, and u(t) = ϕ(t), −τ 6 t 6 0

with t > 0.

Using a comparison principle (See [28]), we get that S(t) 6 S+(t) and u(t) 6 u+(t) for all t > 0, where
(S+, u+) is the solution of

18




dS+

dt
(t) = σ − (µ+ ψ)S+(t) + (1− θ)e−µτu+(t− τ),

u+(t) = ψS+(t) + θe−µτu+(t− τ),
S+(0) = x0, u+(z) = ϕ(z), for − τ 6 z 6 0

with t > 0. (36)

As developped in the subsection 2.6.1, the system (35) has a unique equilibrium given by (25) that
we denote by (S0, u0), since they are the same as (11).
Theorem 2.9 of subsection 2.6.1 gives us that this equilibrium is globally asymptotically stable, ie
S+(t) −−−−−→

t−→+∞
S0 and u+(t) −−−−−→

t−→+∞
u0.

Now, let us chose ε > 0 and define the following region :

Ωε :=
{

(S, I, u) ∈ R+ × R+ × C0([−τ, 0],R+) ; 0 6 S 6 S0 + ε and 0 6 u(s) 6 u0 + ε, s ∈ [−τ, 0]
}
(37)

Thus, we just have shown the following :

Lemma 2.12. For any ε > 0 small enough, the subset Ωε ⊂ R+ × R+ × C0([−τ, 0],R+) is a global
attractor for the system (5).

Then, thanks to the Lemme 2.12, we can restrict the study of the global asymptotic stability of the
disease-free of (5) to the region Ωε. We get then

Theorem 2.13. Suppose that R0 < 1. Then, the disease-free steady-state S0, 0, u0) given by (12) of our
model (5) is globally asymptotically stable.

Proof. As given by the previous lemme, it suffices to study the stability for solutions in Ωε, for any ε > 0.
Then, forall t > 0, we have

I ′(t) 6 −µI(t) + β(S0 + ε)I(t) = −µ
(

1− β(S0 + ε)

µ

)
I(t)

SinceR0 = βS0

µ < 1, we can find an ε > 0 such as the right-hand side of the previous inequality is negative.
This implies that t −→ I(t) is decreasing as its derivative is negative for al t > 0, thus lim

t−→+∞
I(t) = 0,

as I is positive.
By the definition of the limit, we see that for any ε > 0, there exists a Tε > 0, such that I(t) 6 ε, for
t > Tε. We then have for t > Tε :{

S′(t) > σ − (µ+ ψ)S(t)− εβS(t) + (1− θ)e−µτu(t− τ),
u(t) = ψS(t) + θe−µτu(t− τ).

Then, we have, by a comparison principle (See [28]), S(t) > Sε(t) and u(t) > uε(t) for all t > Tε, where
(Sε, uε) are the solutions of the following system : S′ε(t) = σ − (µ+ ψ)Sε(t)− εβSε(t) + (1− θ)e−µτuε(t− τ),

uε(t) = ψSε(t) + θe−µτuε(t− τ),
Sε(0) = S0, uε(z) = ϕ(z), for − τ 6 z 6 0.

(38)

Adapting easily the section 2.6.1 and 2.6.2 , we can show that Sε(t) −−−−−→
t−→+∞

S0
ε and uε(t) −−−−−→

t−→+∞
u0
ε,

where (S0
ε , u

0
ε) is the steady-state of the system (36) given by (25).

Then, there exists a T̃ε > Tε > 0, such that for all t > T̃ε we have

S0
ε − ε 6 S(t) 6 S0 + ε and u0

ε − ε 6 u(t) 6 u0 + ε

Then, since ε > 0 is arbitrary and S0
ε −−−−→
ε−→0

S0 and u0
ε −−−−→
ε−→0

u0, we get, with the previous inequalities,
that

lim
t−→+∞

S(t) = S0 and lim
t−→+∞

u(t) = u0

From Theorem 2.7, we have that the disease-free equilibrium (S0, 0, u0) is locally asymptotically stable.
Then, we shown that (S0, 0, u0) is globally asymptotically stable.
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2.7.2 Global asymptotic stability of the endemic equilibrium

In this section, we show the global asymptotic stability of the endemic equilibrium (S, I, u) of (5) given
by (12).
First, let us assume that R0 > 1.
This equilibrium satisfies S > 0, I > 0 and u > 0. Let us define S̃(t) := S(t) − S and ũ(t) := u(t) − u.
Then, the system (5) becomes, with βS = µ,

S̃′(t) = −(µ+ ψ)S̃(t)− βS̃(t)I(t)− βSI(t) + βS I + (1− θ)e−µτ ũ(t− τ),

I ′(t) = −µI(t) + βS̃(t)I(t) + βSI(t) = βS̃(t)I(t),

ũ(t) = ψS̃(t) + θe−µτ ũ(t− τ).

(39)

We then get the following result :

Theorem 2.14. Let us suppose that R0 > 1. Then, the endemic steady-state given by (12) of our model
(5) is globally asymptotically stable.

Proof. In order to proove this result, we use a Lyapunov-like theorem in [30] (also see Lemma 8.2 in [28]).
We define the following function V : R+ × R+ × C0([−τ ; 0],R+) −→ +∞ given by

V (S0, I0, ϕ) =
S2

0

2
+ ξ

∫ 0

−τ
ϕ2(s)ds+ S

(
I0 − I − I ln

I0

I

)

with ξ =
ψ + µ(1− (αe−µτ )2)

2ψ2
.

Notice that the following function f : I0 7−→ I0− I− I ln
I0

I
, for I0 > 0, is nonnegative. Indeed, it suffices

to study the function x 7−→ x ln(x)− x+ 1 and to evaluate this function at x = I
I0
. Moreover, f(I0) = 0

if and only if I0 = I, this gives us that V (S0, I0, ϕ) = 0 if and only if (S0, I0, ϕ) = (0, I, 0).
Let us compute now the derivative of t 7−→ V (S̃(t), I(t), ũt) along the solution trajectory. We get

dV

dt
(S̃(t), I(t), ũt) = −(µ+ ψ − ξψ2)S̃2(t) +

[
(1− θ)e−µτ + 2ψθe−µτ

]
S̃(t)ũ2(t− τ),

− ξũ2(t− τ)
[
1− θ2(e−τµ)2

]
− βI(t)S̃2(t),

= −aS̃2(t) + bS̃(t)ũ2(t− τ)− cũ2(t− τ)− βI(t)S̃2(t),

6 −aS̃2(t) + bS̃(t)ũ2(t− τ)− cũ2(t− τ),

6 −c

[(
ũ(t− τ)− b

2c
S̃(t)

)2

+
4ac− b2

4c2

]
.

with a = µ+ ψ − ξψ2 > 0, b = (1− θ)e−µτ + 2ψθe−µτ > 0 and c = ξ
[
1− θ2(e−τµ)2

]
> 0.

Since c > 0, we get
dV

dt
(S̃(t), I(t), ũt) 6

b2 − 4ac

4c
= −ωS̃2(t), (40)

with ω :=
4ac− b2

4c
which is positive since b2 − 4ac < 0 (see proof of Theorem 2.9). The function

t 7−→ V (S̃(t), I(t), ũt) is nonincreasing and we get, as V is lower bounded by 0, that

V (S̃(t), I(t), ũt) −−−−−→
t−→+∞

inf
t>0

{
V (S̃(t), I(t), ũt)

}
:= V ∗.

Thus, V is a lower bounded function (bounded by its infimum) and such as

−dV
dt

(S̃(t), I(t), ũt) >M(S̃(t)),

with M : x 7−→ ωx2. This function M is clearly continuous, positive definite and radially unbounded
since lim

t−→+∞
M(x) = +∞.

Moreover, t 7−→ S̃′(t) is uniformly unbounded since t 7−→ S(t), t 7−→ I(t) and t 7−→ u(t) are uniformly
unbounded (see Proposition 2.3.). Thus t 7−→ S̃(t) is Lipschitzian and then uniformly continuous. We
can now apply Corollary 2 of [30] and we get

lim
t−→+∞

S̃(t) = 0 ⇐⇒ lim
t−→+∞

S(t) = S.
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After, we write the equation of ũ in (39) like in the demonstration of Proposition 2.3 :

ũ(t) = ψS̃(t) + θe−µτ ũ(t− τ) ⇐⇒ Dũt = h(t),

where h(t) := ψS̃(t) and Dy := θe−µτy(−τ) for t > 0. As D is uniformly stable and S̃(t) −→
t−→+∞

0, we

can use the Lemma 3.5 of [31] and get

lim
t−→+∞

ũt = 0 ⇐⇒ lim
t−→+∞

ut = u

Furthermore, using the expression of V , we get

lim
t−→+∞

f(I(t)) =
V ∗

S
.

Then, since the function t 7−→ S̃(t) is bounded and continuously differentiable, the fluctuation lemma
(see Lemma 2.8 in [32]) gives us that there exists a sequence (sn)n such as

sn −→
n−→+∞

+∞ and lim
n−→+∞

S̃′(sn) = 0.

And, the first equation of (39) gives us lim
n−→+∞

I(sn) = I. The continuity of f gives

lim
n−→+∞

f(I(sn)) = f(I) = 0.

More precisely, we get V ∗ = 0 and then lim
t−→+∞

f(I(t)) = 0.

Using the properties of f , we get that lim
t−→+∞

I(t) = I.

This concludes our proof and (S, I, u) is globally asymptotically stable.

3 Numerical simulations and analysis
In this section, we test our model on real datasets of HIV/AIDS epidemic in France in male homosexual
population.

3.1 Detected Vs infected
Before we introduce our concrete datasets, we discuss about the distinction between detected and infected
individuals at a time t. We know that if we are detected, we then are infected. The problem is that all
infected individuals are not detected. For the HIV-AIDS epidemic this problem is major. Indeed, the
HIV infection is divided in three parts6 : the primo-infection/acute stage, in which individuals may have
some weak symptoms such as flu-like symptoms and lasts more or less one month ; the chronic infection
in which individuals may have no symptoms and can lead to AIDS stage in about 8-10 years ; the AIDS
stage in which individuals get infected by any disease and without a treatment, this stage lasts at most
3 years.
Thus, between infection and detection of an HIV-infected individual, years may have passed. In [1]
Figure 1, we can have an idea of the time between seroconversion, i.e. HIV-infection, and the HIV/AIDS-
detection. We can have a better estimation of this delay with our dataset.
Because of a lack of considerable datas to clearly distinguish infected from detected individuals, we will
assume that both of these populations are the same.

3.2 Datasets
In this section, I introduce the datasets I used to test on the model.

3.2.1 HIV population

In order to estimate some parameter of the model, we need datas on the situation of HIV-AIDS epidemic
in France, more precisely in the MSM (Men who have sexual intercourses with men) population, such
as the number of infected individuals. We remind that for our purpose and with the data we own, we
assimilate the detected and the infected individuals.

6https://aidsinfo.nih.gov/understanding-hiv-aids/fact-sheets/19/46/the-stages-of-hiv-infection
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We mainly use the following two papers [33] and [34] to extract our datasets. We summarize those
datasets in the following Table 2 :

Year Number of HIV-detected Number of HIV-detected
in the French population in the French MSM population

2003 7647 ###
2004 7823 ###
2005 7583 ###
2006 7096 ###
2007 6510 ###
2008 6309 ###
2009 6303 ###
2010 6240 2040
2011 6085 1980
2012 6372 2160
2013 6688 2145
2014 6480 2080
2015 6380 2005
2016 6330 1910
2017 6583 1970
2018 6155 1700

Table 2: Table of detected HIV cases in the French population (second column) and in the French MSM
population (third column). # represents datas that could not be found with a sufficient precision. See
Figure 1 in [33], Figure 1 in [34] and Figure 3 in [35].

Furthermore, as discussed in the previous section, in [35], we can extract the time repartition between
the detection and the infection of an individual in the French MSM population. Indeed, in Figure 4
of [35], we get that an average of 42, 5% of the individuals was detected in the acute stage, 38.5% was
detected in the chronic infection phase and 19% was detected in the AIDS stage .

3.2.2 PrEP users

In the model, we include the PrEP treatment. This treatment is quite recent, thus we have few data.
Each 3 month, the patient decides if he/she wants to give up the treatment or to continue. That is why
in our model, we need the probability that an individual continues his treatment and the proportion of
individuals that begin the PrEP treatment.
We found those datas in [2]. As said in this rapport, the main PrEP users in the considered population
(French population) may be MSM (See section 5 in [2]). Thus we assume that 60% of the individuals of
the population considered in the dataset of [2] is MSM. We transcribe here the main dataset in [2] in the
following Table 3 :

Semester Inititation of PrEP Renewal of the treatment Total of PrEP users
S1 - 2016 1166 ### 1166
S2 - 2016 1826 911 2737
S1 - 2017 2193 2273 4666
S2 - 2017 2564 3807 6371
S1 - 2018 3138 5413 8551
S2 - 2018 4488 7647 12135
S1 - 2019 5103 10398 15501

Table 3: Total number of PrEP users in France since 2016, given by semester (See [2], Table 3).

3.3 Time dependent basic reproduction number R0(t)

One important data we need to estimate is the current basic reproduction number of the HIV-AIDS
epidemic. We want to have a tendency of the current R0 to be able to assume a future R0. In order to
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get it, we use the package in R language untitled R07. We precisely use the function est.R0.SB which
estimates the R0 using a Bayesian approach following the idea developped in [36].
First, we compute this one in the global French population using the datas of Table 2. We get the
following tendency ploted in Figure 2 (See below).

Figure 3: Plot of the time dependent basic reproduction number R0(t) of HIV-AIDS epidemic in the
French population. The grey zone represents the confidence interval of the estimation.

We see in Figure 2 that the tendancy is globally constant since 2012 and R0(t) equals 0.95.

Now, we focus on the MSM French population. Using the datas in Table 2, we also compute the time
dependent basic reproduction number R0(t) in our precise population (See Figure 3 below).

7See : https://www.rdocumentation.org/packages/R0/versions/1.2-6
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Figure 4: Plot of the time dependent basic reproduction number R0(t) of HIV-AIDS epidemic in the
French MSM population. The grey zone represents the confidence interval of the estimation.

In Figure 3, we see that the time dependent basic reproduction number in the MSM French population
is clearly decreasing and the last value, in 2017, is around R0(2017) ' 0.93, and we assume that the
future tendency of this R0(t) is still decreasing.
Thus, in our numerical simulations, we choose R0 = 0.93.

3.4 Choices of parameters
In this section, I explain how I chose the parameters used in our numerical simulations.
In the previous section (See 3.3), we already chose R0 equals to 0.93.
Also, since the beginning, we chose τ = 3 months.
With official French datas8, we get the rate of death per year for 1000 inhabitants in France in 2019 is 9.1.
Thus, as we need the rate for one individual per month, we get that µ = 0.75×10−3 individuals.month−1.
Thanks to Table 3, we get values of parameters θ and ψ. Indeed, each semester, we get a different θ by
using the following formula coming from its definition :

θ(semester) =
(Number of renewal treatment of the current semester)× 0.6

Total of PrEP users of the previous semester
.

And then we choose ψ, per semester, as it follows :

ψ(semester) =
Number of individuals who begins the treatment

S(0)
,

where S(0) is the initial condition for the compartment S.
In the folowing Table 4, we summarize all those parameters :

8See : https://www.insee.fr/fr/statistiques/2383440#tableau-figure1.
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Semester Values of ψ Values of θ
S1 - 2016 0.00027 ###
S2 - 2016 0.00043 0.7813
S1 - 2017 0.00052 0.8305
S2 - 2017 0.00061 0.8159
S1 - 2018 0.0007 0.8496
S2 - 2018 0.0011 0.8943
S1 - 2019 0.0012 0.8569

Table 4: Values of parameters ψ and θ per semester, computed according to datasets.

Remark 6. The values of ψ in Table 4 are given per semester. In our simulations, we need ψ per month.
We use the following formula to get the required ψ :

ψ(month) =
(Number of individuals who begins the treatment)÷ 6

S(0)
,

Dividing each value of ψ in Table 4 by 6, we get the required values of ψ (see Table 5 below) :

Semester Values of ψ
S1 - 2016 0.0000466
S2 - 2016 0.000073
S1 - 2017 0.0000876
S2 - 2017 0.00010
S1 - 2018 0.000125
S2 - 2018 0.000179
S1 - 2019 0.000204

Table 5: Values of parameter ψ per month accordingly to each semester, computed according to datasets.

Thus, for our simulation we choose ψ = 0.000204, the last value of the previous ψ since it is increasing,
and θ = 0.83 as the average value of all the previous θ. This choice will be discussed in sections 4.
Now, we have to choose the initial condition for the function t 7−→ S(t), t 7−→ I(t) and t 7−→ u(t). In
deed, we choose for t = 0 the date January, the 1st of 2016.

Thus, for the initial condition we chose the function uinit : [−τ = −3, 0] −→ R+, t 7−→ uinit(t) as the
cubic spline interpolation of 60% of each total number of the last column in Table 3.

A French institute of statistics made a study that deals with sexual orientation in France9. We can
find that 4% of the French population declare to be homosexual. Assuming that French population is
around 65000000 of inhabitants, we can choose that S(0) = 2600000.

Then, on the official website of UNAIDS10, we get that 170000 individuals are infected by HIV in
France in 2016. We assume that most of them is homosexual. Thus, we assume that I(0) = 90000.

Now, it remains 2 parameters to be chosen : β and σ. We choose them in order to make R0 be equal
to 0.93. We can choose σ = 3000, in other words, each month, 3000 individuals might have been in
contact with an infected one and then become susceptible. Thus, we play on the value of β in order to
get R0 = 0.93.

3.5 Simulations
3.5.1 Simulations

In this section, we show the results we get using the parameters obtained in the previous section. We
summarize them in the following table 5 :

9See https://www.ifop.com/wp-content/uploads/2018/03/2669-1-study_file.pdf, on page 14.
10See https://www.unaids.org/en/regionscountries/countries/france.
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Parameter Value
ψ See Table 5
θ See Table 4
σ 3000
µ 0.75× 10−3

β 1.821× 10−10

τ 3
S(0) 2500000
I(0) 90000

Table 6: Values of the parameters used in the numerical simulations.

We plot then 2 simulations. The first simulations is over 400 years (see Figure 4 below) and the second
one is over 15 years (see Figure 5 below).

Figure 5: Plot of the evolution of the different compartments along the time (over 400 years). The crosses
in the last plot represent the real values of the number of PrEP users got in the Table 3.
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Figure 6: Plot of the evolution of the different compartments along the time (over 15 years). The crosses
in the last plot represent the real values of the number of PrEP users got in the Table 3.

With our parameters, we get that R0 = 0.9305. Thus, the disease-free equilibrium is globally asymp-
totically stable and the respective values are :

S0 = 3942026.075 ; I0 = 0 ; P 0 = 14019.62

3.5.2 Discussion

Let us discuss the previous simulations. On Figure 4, we see after 400 years, the number of protected
individuals slowly reaches 14000 wheres the true datas has already reached 1200 in 3 years. Thus, too
few individuals goes in the compartment of protected individuals in the long term.

On Figure 5, we clearly see a difference in the way the real datas of protected individuals (crosses) and
our simulation of protected individuals (green curve) grow. Indeed, the first one is clearly convexe whereas
the second one is concave. It means that we have too much protected individuals in our simulation at
the beginning, in other words, too much suscpetibles are sent in the compartment of the protected ones.

Thus, the parameter ψ may be too high at the beginnig but too much small in the long term.
According to Table 4, the value of ψ is clearly time dependent and is clearly less than 0.000204 during
the first semesters (around ten times inferior). This remark leads us to the next section in which we focus
on the choice of ψ and its time-dependence.

4 Hill function and a new model
In this section, we deal with some modifications in model (5). We first modify intial condition of the
PDE (2), which is satisfied by the distribution p. This leads us to a new non-linear model. We study its
properties and its stability. Then, we make some numerical simulations.

4.1 Hill function
In this subsection, we remind some facts about the function of Hill.
We call Hill function the following function H : R+ −→ R defined by

∀x ∈ R+, H(x) = xsat
xn

Kn + xn
.

We easily notice that H is increasing and

lim
x−→+∞

H(x) = xsat ; lim
x−→0

H(x) = 0.

In the definition of H, n ∈ N, xsat,K ∈ R are constants to be chosen. They have precise role.
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• xsat : This constant represents the saturation of the Hill function, in other words, it is the threshold
that cannot be passed.

• K : This constant satisfies H(K) =
xsat

2
. And more precisely, it is the abscisse of the inflexion

point.

• n : This integer gives the intensity of the slope of H. The bigger n, the more inclined the slope.

4.2 Hill function as initial conditions
4.2.1 New model

In this subsection, we modify model (5). In the previous one, the initial condition of the PDE (2), which
is satisfied by the distribution p, is linear. This choice may be debatable. Indeed, it supposes that, at
any time t, any quantity of susceptible individuals might begin the PrEP treament, which seems unreal.
That is why, we assume the this quantity of new PrEP users is bounded and follow a precise dynamic
within the time.

We assume that the time evolution of susceptibles who is allowed to begin the PrEP treatment behave
as a Hill function.

This modification makes the initial condition of the PDE not to be linear any more. We are going to
see how this modification modifies the system (5). Let us rewrite the PDE satisfied by the distribution
p. We get 

∂p

∂t
(t, a) +

∂p

∂a
(t, a) = −µp(t, a), 0 < a < τ,

p(t, 0) = ψH(S(t)) + θp(t, τ).

(41)

with H the Hill function whose parameters are n = 2, xsat = 5000000 and K = 120(months). this gives
us that

H(t) = 5000000
t2

1202 + t2
(42)

Those parameters are totally assumed by the autor. Indeed, we can choose the speed of reaching the
saturation of susceptible individuals who may begin the PrEP, by choosing n, the maximal number of
them that may begin the PrEP treatment, by fixing xsat, and the time when the number of susceptible
individuals is big enough in order to diminish the slope of H, by choosing K. Indeed, we suppose that
the growth is quite slow (n = 2). Also, our initial condition of susceptibles is S(0) = 2500000, thus taking
xsat = 5000000 seems reasonable assuming that the MSM French population may grow. And, according
to Table 3, we see that the number of PrEP users grows quicker within the time, thus we may assume
that in 10 years, we reach a sufficient number of susceptibles who problably may be interested in taking
the PrEP.

Following the same steps as in subsection 2.1, we get a new model given by S′(t) = σ − βI(t)S(t)− µS(t)− ψH(S(t)) + (1− θ)e−µτu(t− τ),
I ′(t) = βI(t)S(t)− µI(t),
u(t) = ψH(S(t)) + θe−µτu(t− τ),

with t > τ. (43)

S(0) = S0, I(0) = I0, and u(t) = ϕ(t), −τ 6 t 6 0, (44)

Remark 7. The differential equation on P is also modified and satisfies

P ′(t) = −µP (t) + ψH(S(t)) + (θ − 1)e−µτu(t− τ). (45)

4.2.2 Well-posedness of the new model

As we did in section 2.2, we give a theorem that sum up the fondamental properties of model (43).

Theorem 4.1. For each nonnegative initial value (S0, I0, ϕ), with ϕ ∈ C0([−τ, 0]), the model (43) has a
unique solution defined on [−τ ; +∞[.
Moreover, the solution is positive on R+ for any positive initial conditions and they are uniformly bounded.

Proof. The proof of this theorem follows the same steps as for model (5) since t 7−→ H(t) is positive.
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4.2.3 Existence and characterization of the steady states

In this subsection, we are interested in the existence and the characterization of the equilibria of system
(43). Let us consider (S∗, I∗, u∗) a potential equilibrium. This one satisfies : 0 = σ − βI∗S∗ − µS∗ − ψH(S∗) + (1− θ)e−µτu∗,

0 = βI∗S∗ − µI∗,
u∗ = ψH(S∗) + θe−µτu∗.

(46)

Last equation of (46) gives directly the expression for u∗ :

u∗ =
ψH(S∗)

1− θe−µθ
(⊕)

The second equation of (46) gives two cases to be considered :

0 = βI∗S∗ − µI∗ ⇐⇒ I∗ = 0 or S∗ =
µ

β
.

Endemic steady-state (S
H
, I
H
, uH)

We consider here S∗ = µ
β = S

H
. This gives us the expression of uH using (⊕):

uH =
ψH(S

H
)

1− θe−µτ
=

ψH(µβ )

1− θe−µτ
.

And finally the first equation of (46) gives the expression of I
H

:

I
H

=
1

µ

[
σ − µ2

β
− ψH(S

H
) + (1− θ)e−µτ

]
=
σ

µ
−
µ2 + ψβH(µβ )− (µ2θ + ψβH(µβ ))e−µτ

βµ(1− θe−µτ )
.

And as previously, this equilibrium exists by definition if and only if I
H
> 0 and in other words if and

only if σµ >
µ2+ψβH(µβ )−(µ2θ+ψβH(µβ ))e−µτ

βµ(1−θe−µτ ) .

We can summarize that the system (43) has a unique endemic equilibrium (S
H
, I
H
, uH) if and only if

σ

µ
>
µ2 + ψβH(µβ )− (µ2θ + ψβH(µβ ))e−µτ

βµ(1− θe−µτ )

which is given

(S
H
, I
H
, uH) :=

(
µ

β
;
σ

µ
−
µ2 + ψβH(µβ )− (µ2θ + ψβH(µβ ))e−µτ

βµ(1− θe−µτ )
;

ψH(µβ )

1− θe−µτ

)
(47)

Disease free steady-state (SH0 , IH0 , uH0 )
Now we consider the second case : I∗ = 0 = IH0 .
Thank to (⊕), we get that

uH0 =
ψH(SH0 )

1− θe−µτ
.

Then, the first equation of (46) becomes

0 = σ − µS∗ + ψH(S∗)

(
(1− θ)e−τµ

1− θe−τµ
− 1

)
= F (S∗),

where F : x 7−→ σ − µx+ ψH(x)
(

(1−θ)e−τµ
1−θe−τµ − 1

)
and is continuous. We now have to show if such a S∗

does exist. We first have

e−µτ − 1 < 0 ⇐⇒ e−µτ + θe−µτ − θe−µτ − 1 < 0

⇐⇒ e−µτ (1− θ) < 1− θe−µτ

⇐⇒ e−µτ (1− θ)
1− θe−µτ

− 1 < 0
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Thus, F is decreasing since x 7−→ H is increasing.
Moreover, F (0) = σ > 0 and F (σµ ) = ψH(σµ )

(
(1−θ)e−τµ
1−θe−τµ − 1

)
< 0. Then, using the continuity and the

Intermediate Value Theorem, we get that there exists a unique SH0 > 0 such that F (SH0 ) = 0. This gives
us existence of a unique disease-free equilibrium given by

(SH0 , I
H
0 , u

H
0 ) :=

(
SH0 ; 0 ;

ψH(SH0 )

1− θe−µτ

)
. (48)

We can then sum up the characterization of the equilibria by the following theorem :

Theorem 4.2. Suppose that the following condition holds :

σ

µ
>
µ2 + ψβH(µβ )− (µ2θ + ψβH(µβ ))e−µτ

βµ(1− θe−µτ )
(H̃)

Then system (43) has two steady-states : a disease free steady-state given by (48) and an endemic steady-
state defined by relation (47). If the condition (H̃) does not hold any more, then system (43) has only
the disease-free equilibrium.

4.2.4 Basic reproduction number RH0
In this subsection, we compute the basic reproduction number of system (43). As in section 2.4, let us
have a look at the second equation of (43) and rewrite it :

I ′(t) = I(t) [βS(t)− µ] ⇐⇒ I ′(t)

µI(t)
=
βS(t)

µ
− 1.

By the same reasons as in section 2.4, we have that the infection triggers if and only if βS(t)
µ − 1 > 0.

Thus, we define the basic reproduction number of (43) by

RH0 :=
βSH0
µ

. (49)

4.2.5 Stability of the equilibria

In this section, we study the local stability of the equilibria. First, we linearize our system (43) around
an equilibrium (S∗, I∗, u∗). Aftercomputing the Jacobian of the system evaluated in (S∗, I∗, u∗), we get
the linearized system S′(t) = −βI∗S(t)− βS∗I(t)− µS(t)− ψS(t)H ′(S∗) + (1− θ)e−µτu(t− τ),

I ′(t) = βI∗S(t) + βI(t)S∗ − µI(t),
u(t) = ψS(t)H ′(S∗) + θe−µτu(t− τ).

t > τ (50)

Looking for solution of the form S(t) = S0e
λt, I(t) = I0e

λt and u0 = u0e
−λt, we get the following linear

system :  λ+ βI∗ + µ+ ψH ′(S∗) βS∗ −(1− θ)e−µτe−τλ
−βI∗ λ− βS∗ + µ 0

−ψH ′(S∗) 0 1− θe−µτe−τλ

 S0

I0
u0

 =

 0
0
0

 .

Then, the characteristic equation ∆H(λ) = 0 of (43) is the determinant of the previous matrix equals to
zero.
In order to demonstrate the local stability of both of the steady-states of (43), we are going to follow the
same steps as we did in section 2.5.

Local stability without delay
Let us consider any equilibrium (S∗, I∗, u∗) of (43). In this no-delay case, ie τ = 0, the characteristic
equation is given by

∆H(λ) = (λ+ µ)(1− θ)(λ− βS∗ + µ+ βI∗) = 0.

We get then the following theorem

Theorem 4.3. For τ = 0, we get the following local stability : if RH0 < 1, the disease-free equilibrium,
given by (48), is the unique steady-state and is locally asymptotically stable. Else, if RH0 > 1, both
of the steady-states coexist, the disease-free is unstable and the endemic one, given by (47), is locally
asymptotically stable.

Proof. Exactly the same as Theorem 2.6.
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Local stability of the disease-free equilibrium
Let us consider the disease-free equilibrium (SH0 , I

H
0 , u

H
0 ) given by (48). The characteristic equation

around this disease-free steady-state is given by

∆H(λ, τ) = (λ+ µ+ βSH0 )
[
λ+ µ+ ψH ′(SH0 )− (θ(λ+ µ) + ψH ′(SH0 ))eµτeλτ

]
= 0.

We then get the following theorem :

Theorem 4.4. Suppose that RH0 < 1. The disease-free given by (48) is locally asymptotically stable.

Proof. Since t 7−→ H(t) is increasing for every t ∈ R+, we get that H ′(SH0 ) > 0. Now let us define
ξ := ψH ′(SH0 ) > 0. We rewrite our characteristic equation :

∆H(λ, τ) = (λ+ µ+ βSH0 )
[
λ+ µ+ ξ − (θ(λ+ µ) + ξ)eµτeλτ

]
= 0.

This equation is the same as in section 2.5.1. Thus, the rest of the proof follows the same steps as
Theorem 2.7.

Local stability of the endemic equilibrium

Here ,let us focus on the endemic equilibrium (S
H
, I
H
, uH) given by (47). The characteristic equation

around this steady-state is

∆(λ, τ) = λ2+(ψH ′(S
H

)+µ+βI
H

)λ+µβI
H−

[
θ(λ2 + (µ+ βI

H
) + λµβI

H
) + ψH ′(S

H
)λ
]
e−µτe−τλ = 0

We then get the following theorem :

Theorem 4.5. Let us take τ > 0 and assume that RH0 (τ) > 1. Then, all the roots of the previous
characteristic equation have a negative real part and thus, the endemic equilibrium of (43) is locally
asymptotically stable.

Proof. We can easily adapt the proof of Theorem 2.8.

4.3 Numerical simulations
4.3.1 Simulations

Then, using the same parameters as before (see Table 6), in section 4, we make two numerical simulations
of model (43). One simulation over 400 years (see Figure 6) and one over 15 years (see Figure 7).

Figure 7: Plot of the evolution of the different compartments of the model (43) along the time (over 400
years). The crosses in the last plot represent the real values of the number of PrEP users got in the Table
3.
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Figure 8: Plot of the evolution of the different compartments of model (43) along the time (over 15 years).
The crosses in the last plot represent the real values of the number of PrEP users got in the Table 3.

4.3.2 Discussion

Let us comment on these figures. We see that within the configuration of parameters of Table 6, we have
R0 < 1. We can guess that S0 ' 3900000 and P 0 ' 175000. In comparison to the first simulation in
section 3.5, we observe that the number of protected passes the current data. But we can notice that
the equilibrium of the protected might be under-estimated, according the dynamic of the dataset (black
crosses on Figures 6 and 7). Indeed, the main issue still lies in the dynamics of the protected. We remark
that the data of Protected has convex growth whereas the blue curve of the simulation is concave. This
convexity expresses that there are too much protected individuals in a small interval of time. Thus, the
choice of ψ is still surestimated in the first months. This leads us to rethink the time dependence of ψ.

5 Hill function to fit the evolution of ψ
In this section, we come back to our first model (5) but we considered the parameter ψ as time-dependent.
this leads us to a non-autonomous model. We do not study its mathematical propoperties because of the
complexity of the non-autonomy, but we make some numerical simulations and discuss the results.

5.1 Parameter ψ is time-dependent
In this section, we are going to investigate the choice of ψ. We clearly saw that ψ is time-dependent (See
Table 4). This time-dependence makes our system not be an autonomous system any more. Thus, all
the study made in Section 1 must be remade. That is why, in this section, we only focus on numerical
aspect and forget the mathematical dimension.

We assume ψ is time-dependent and follows a Hill function-like growth (according to data in Table
5). Indeed, this parameter cannot grow indefinitely, thus it reaches a saturation (xsat in section 4.1).

So, we now fit the dynamic of the dataset of ψ (Table 5) with a Hill function.
We set xsat = 0.0007. Indeed, if we consider that the susceptible population is around 4000000 after some
decades, then we have xsat × 4000000 = 2800 susceptibles per month that begin the PrEP, which seems
reasonable on the long term.

Then, taking n = 2 and K = 146000 (which represents 146 months for some computational reasons),
we obtain the following plot (see Figure 8 bellow) :
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Figure 9: Fitting of the dataset given in Table 5 with a Hill function. Black crosses represent the data and
the blue curve is the Hill function fit. The scale of the abscisse is adapted to the numerical simulations.

More precisely, the equation of the Hill function for ψ is

ψ(t) = 0.0007
t2

1460002 + t2
+ 0.0000466. (51)

We forget temporarly what we did in the previous subsection 4.2 and write a new non-autonomous
model by :  S′(t) = σ − βI(t)S(t)− (µ+ ψ(t))S(t) + (1− θ)e−µτu(t− τ),

I ′(t) = βI(t)S(t)− µI(t),
u(t) = ψ(t)S(t) + θe−µτu(t− τ),

with t > τ. (52)

S(0) = S0, I(0) = I0, and u(t) = ϕ(t), −τ 6 t 6 0, (53)

Then, we make two numerical simulations of this new model (52) (See figures 9 and 10 below).

Figure 10: Plot of the evolution of the different compartments of model (52) along the time (over 400
years). The crosses in the last plot represent the real values of the number of PrEP users got in the Table
3.
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Figure 11: Plot of the evolution of the different compartments of model (52) along the time (over 15
years). The crosses in the last plot represent the real values of the number of PrEP users got in the Table
3.

5.2 Discussion
In figures 9 and 10, with the same parameters and thefunction t 7−→ ψ(t), we see that we still have
R0 < 1. Precisely, we get that S0 ' 3900000 and P 0 ' 50000. The modification made in model (52)
presents two advantages : on the on hand, we reach a important number of susceptibles in few decades,
and on the other hand the dynamics of the data and curve of the simulation are quite the same, we got
the same dynamicin terms of convexity.

The unique difference lies in the growth of our simulation that is still a little too slow in comparison
to the data. This fact leads us to the next subsection.

6 Complete Hill function-like model

6.1 Hill function and simulations
In this subsection, we finally combine both of the modifications made in subsections 4.2 and 4.3. We get
the following non-autonomous difference-differential model with discrete delay S′(t) = σ − βI(t)S(t)− µS(t)− ψ(t)H(S(t)) + (1− θ)e−µτu(t− τ),

I ′(t) = βI(t)S(t)− µI(t),
u(t) = ψ(t)H(S(t)) + θe−µτu(t− τ),

with t > τ. (54)

S(0) = S0, I(0) = I0, and u(t) = ϕ(t), −τ 6 t 6 0, (55)

with t 7−→ ψ(t) given by equation (51) and t 7−→ H(t) given by equation (42). Other parameters are
taken in Table 6.

As previously, we make two numerical simulations of this model that we compare to our data of Table
3.
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Figure 12: Plot of the evolution of the different compartments of model (54) along the time (over 400
years). The crosses in the last plot represent the real values of the number of PrEP users got in the Table
3.

Figure 13: Plot of the evolution of the different compartments of model (54) along the time (over 15
years). The crosses in the last plot represent the real values of the number of PrEP users got in the Table
3.

Within this combination of parameters, we still have R0 < 1 and we can estimate that S0 ' 3900000
and P 0 ' 65000. We observe also that the time-dependence of ψ and the control of S(t) with a Hill
function-like behaviour fit perfectly the data of the protected.

7 PrEP global effectiveness
In this section, we explain how the use of PrEP can help to fight against the HIV epidemics. We see that
a well control of the PrEP enables to reduce the R0 and, in the long term, to earn money in terms of
public health.

35



7.1 Effectiveness in terms of public health
As expected, the use of PrEP enables clearly to reduces the number of infected individuals. The more
protected individuals there are, the less infected individuals there are along the time. Figure 13 shows
this evolution.

Figure 14: Evolution of the number of protected and infected individuals along the time.

More precisely, in terms of epidemiology, we succed to reduce the R0 thanks to the parameters linked
to the use of PrEP. We have three parameters to rely on : θ, ψ and τ . In the following figures 14 and 15,
we plot the evolution of R0 in function of two of these parameters.
Proposition 2.5. tells us that R0 is a decreasing function of ψ, τ and θ. In figure 14, we see that for
θ > 0.90, the R0 decreases very quickly for ψ as big as possible. It means that, for a certain rate of
ψ fixed, the more protected individuals remain under PrEP after one period, the more the R0 keeps
decreasing. In other words, we do not need to make the whole population take the PrEP but we must
focus on those who are under PrEP and make them continue under PrEP.
In figure 15, we plot the evolution of R0 in fonction of θ and τ . We see that the longer the period under
PrEP, in other words, the bigger τ , the less R0. Indeed, as we assumed that an individual under PrEP
will not stop it till the end of the τ -period, we ensure that we keep individuals under PrEP for a longer
time. And thus, we do not need a lot of new individuals to begin the PrEP treatment.
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Figure 15: The basic reproduction number R0 in function of the parameters θ and ψ.

Figure 16: The basic reproduction number R0 in function of the parameters θ and τ .

7.2 Saving money in comparison to the Tritherapy
An important point to study about the use of PrEP is its costs in order to know how expensive could be
an awareness campaign about the PrEP.
In figure 16, we plot the cost of some combinations of treatment along the time to see how expensive it is.
In France, we assume that the tritherapy is aroung 1000 e11. Then, we know thatthe cost of the PrEP

11https://www.latribune.fr/actualites/economie/france/20130405trib000757841/1.000-a-1.
500-euros-le-cout-mensuel-de-la-tritherapie-d-un-malade-du-sida.html#:~:text=Ces%20traitements%20ont%
20évidemment%20un,et%20des%20analyses%20sanguines%20régulières.
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drug (TRUVADA) is around 300e for a month12 and the generic drug for the PrEP is around 100e.
In Figure 16, we see that the global tendency of the costs (green and yellow curves) is decreasing.
Obviously, the coexistence of PrEP and Tritherapy is more expensive than the tritherapy only. But, for a
fixed number of individual under PrEP, we know that along the time, there will be less individual under
Tritherapy and thus the cost will keep diminishing. Thus, it is worth investing in the PrEP as within
some years, the combination of PrEP and tritherapy will be cheaper than the use of tritherapy only.

Figure 17: Cost evolution of different combinations of treatment along the time.

8 Conclusion and discussion
In this dissertation, we presented a new mathematical compartmental model of the HIV-AIDS epidemics.
This model is a coupled system of difference-differential equations. We make a complete study. This
model has two steady-states, a disease-free one and an endemic one. We demonstrated that the disease-
free equilibrium is globally asymptotically stable if the basic reproduction number R0 is less than 1, and
the endemic equilibrium is globally asymptotically stable if R0 > 1. Moreover, in order to fit our dataset,
we improve our model. We thus consider a nonlinear initial condition using a Hill function. Also, we make
our system of equations non-autonomous. Indeed, we choose one parameter and fit its time evolution
with a hill function. Then, we make some numerical simulations and we claim that the best simulation is
the one with the use of the Hill function in the two cases. We see that the use of PrEP enables to cleary
reduce the number of infected individuals and thus to maintain the intensity of the HIV epidemics along
the time. That is why the PrEP treatment should be and must be more spread and introduced in the
population.

However, some points of our model are questionable. The most important problem with the HIV
epidemics is about the data. As we already discussed, it is really difficult to estimate the true number of
infected individual since there is a very long incubation period before AIDS symptoms and susceptible
individuals since there is no ways to know exactly every interourses between individuals. Thus, we
should find a way to estimate better those populations. Moreover, we assumed that during the three
month period, an individual under PrEP will not stop the treatment. Obviously, we know that some
individuals will not respect the treatment (forget it, stop it...). Thus we may consider it in a future
model by adding an arrow going outside from the compartment of the protected. Furthermore, about
the parameter µ. We consider it as being the natural dead rate. But to be more precise, this parameter
contains also the rate of sexual life end. However, we clearly assume that the rate of sexual life end is less
than the natural dead rate. Finally, our model takes into account only the PrEP as a preventing method.
That is why the R0 cannot decrease a lot. But we must remind that the use of condom is a widely used
and helps reduce the R0 and contain the epidemics. Finally, in a future work, we must make a complete
study of the non-autonomous model in order to have a better of comprehension of the stability of this
model.

12https://www.vidal.fr/Medicament/truvada-69657-prescription_delivrance_prise_en_charge.htm
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To end with this work, a recent other way to use the PrEP was discovered. An injection of another
combination of drugs every two month is made13. This way of treatment has shown a better accuracy in
the protection against HIV transmission than the oral way of treatment. Thus, we should adapt our work
to this new injection and see through numerical simulations which PrEP treatment is the most accurate.

13https://www.aidsmap.com/news/jul-2020/injectable-prep-offers-superior-efficacy-oral-prep-clinical-trial
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