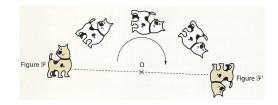
Chapitre: symétrie centrale (par rapport à un point)

SAVOIR-FAIRE À ACQUÉRIR

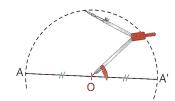
- \square Savoir tracer le symétrique central d'un point puis d'une figure.
- □ Connaître les propriétés de la symétrie centrale et savoir les utiliser.

Plan du cours

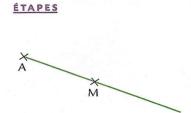

1	Définition et construction	1
2	Propriétés préservées par symétrie centrale	2
3	Centre de symétrie	2

1 Définition et construction

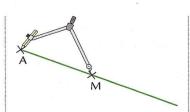
DÉFINITION. (Figures symétrique par rapport à un point)


On dit que deux figures sont symétriques par rapport à un point O si \dots

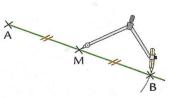
EXEMPLES. Les figures \mathcal{F} et \mathcal{F}' ci-contre sont symétriques par rapport au point O. Le point O est appelé **centre de symétrie**.


DÉFINITION. (Symétrique central d'un point)

Soit A et O deux points distincts.



Remarque : Le symétrique du point O par la symétrie de centre O est le point O lui-même.


 \implies **Méthode** : Pour construire le symétrique central d'un point A par rapport à un point M, on utilise la règle et le compas.

(1) Je trace la demi-droite [AM).

(2) Je prends la distance AM (avec un compas ou une règle graduée).

(3) Sur la demi-droite [AM), je trace B tel que MB = AM.

2	Propriétés préservées par symétrie centrale
Ρl	ROPRIÉTÉ. (Symétrique d'une droite)
	Le symétrique d'une droite par rapport à un point est
l	
ΡJ	ROPRIÉTÉ. (Symétrie centrale et parallélisme)
١	Si deux droites sont symétriques par rapport à un point, alors elles sont parallèles.
Re	marque. La propriété précédente est fausse pour la symétrie axiale.
ΡĮ	ROPRIÉTÉ. (Symétrique d'un segment)
	Le symétrique d'une segment par rapport à un point est
ΡJ	ROPRIÉTÉ. (Autres conservations)
	COPRIETE. (Autres conservations)
ı	
3	Centre de symétrie
D	ÉFINITION. (Centre de symétrie)
	$\begin{bmatrix} \times \end{bmatrix} \begin{pmatrix} \times \end{pmatrix} \times \begin{pmatrix} \circ \\ \times \end{pmatrix}$